Received 8 September 2005 Accepted 30 September 2005

Online 8 October 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Yao Lin, Xiao-Bo Zhang and Ping Lu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: pinglu@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.002 Å R factor = 0.040 wR factor = 0.100 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $C_{20}H_{13}N$, the carbazole moiety is essentially planar, with the two benzene rings twisted by 5.44 (8)°. The dihedral angle between the central fivemembered ring and the ethynylphenyl ring is 47.10 (5)°. The molecular packing in the crystal structure is stabilized by van der Waals forces.

9-(4-Ethynylphenyl)-9H-carbazole

Comment

Carbazole–pyrene-based molecules can be used as organic emitters for organic light-emitting display (OLED) technology. In our earlier article (Xing *et al.*, 2005), we described how some carbazole-based compounds were synthesized and characterized. The title compound, (I), selected and attached to pyrene for its sufficiently high triplet energy and the holetransport property, was synthesized through a Sonogashira coupling reaction between 9-(4-iodophenyl)-9*H*-carbazole and 2-methylbut-3-yn-2-ol, followed by decomposition under base conditions. An X-ray crystal-structure determination of (I) was undertaken in order to elucidate the conformation, and the results are presented here.

A perspective view of (I) with the atom-labeling scheme is shown in Fig. 1. The bond lengths and angles in the carbazole fragment are in good agreement with those observed for a closely related structure (Duan *et al.*, 2004). The carbazole group is essentially planar, the dihedral angle between the two benzene rings being 5.44 (8)°. The central five-membered ring and the C13–C18 benzene ring are not coplanar; the dihedral angle between them is 47.10 (5)°. The interplanar distance between two carbazole planes is 3.875 (2) Å along the *b* axis.

Experimental

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The starting materials were purchased from Acros and used without purification. The intermediate 9-(4-iodophenyl)carbazole and (I)

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

were synthesized according to the method described previously by Sanda *et al.* (2003) and characterized by IR, ¹H NMR, ¹³C NMR and elemental analysis. Compound (I), ¹H NMR (500 MHz, δ in p.p.m., CDCl₃): 3.18 (1H, *s*), 7.25–8.20 (12*H*, Ar). ¹³C NMR (125 MHz, δ in p.p.m., CDCl₃): 78.1, 82.9, 109.8, 120.4, 120.5, 121.0, 123.5, 126.1, 126.8, 133.8, 138.1, 140.6. IR (KBr, cm⁻¹): 3266, 2102, 1600, 1556, 1452, 1230, 839, 755, 723. Analysis calculated for C₂₀H₁₃N: C 89.86, H 4.90, N 5.24%; found: C 89.79, H 5.00, N 5.21%. The crystal used for the data collection was obtained by slow evaporation of a saturated hexane–dichloromethane solution of (I) at room temperature.

Crystal data

$\begin{array}{l} C_{20}H_{13}N \\ M_r = 267.31 \\ \text{Monoclinic, } C2/c \\ a = 26.753 \ (3) \\ b = 5.7309 \ (6) \\ c = 20.185 \ (2) \\ \beta = 110.868 \ (2)^{\circ} \\ V = 2891.8 \ (5) \\ A^3 \\ Z = 8 \end{array}$	$D_x = 1.228 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 2387 reflections $\theta = 6.3-50.8^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 294 (2) K Block, colorless $0.54 \times 0.52 \times 0.43 \text{ mm}$
Data collection Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.7291, T_{max} = 0.970$ 8078 measured reflections	3153 independent reflections 2104 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 27.0^{\circ}$ $h = -34 \rightarrow 32$ $k = -7 \rightarrow 7$ $l = -25 \rightarrow 20$

Refinement

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.05P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.002 \\ \Delta\rho_{max} = 0.19 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{min} = -0.17 \ e \ \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL97} \\ &\text{Extinction coefficient: 0.0108 (7)} \end{split}$$

All H atoms, located in a difference Fourier map, were refined freely. C–H distances are in the range 0.924 (16)–0.990 (14) Å.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

PL thanks the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province.

References

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Duan, X.-M., Chen, L.-G., Xu, Y.-J., Li, Y., Han, J. & Li, L.-P. (2004). Acta Cryst. E60, o1931–o1932.

Sanda, F., Kawaguchi, T., Masuda, T. & Kobayashi, N. (2003). *Macromolecules*, **36**, 2224–2229.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Xing, Y.-J., Xu, X.-J., Zhang, P., Tian, W.-J., Yu, G., Lu, P., Liu, Y.-Q. & Zhu, D.-B. (2005). Chem. Phys. Lett. 408, 169–173.