Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Yao Lin, Xiao-Bo Zhang and Ping Lu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: pinglu@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.100$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

9-(4-Ethynylphenyl)-9H-carbazole

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}$, the carbazole moiety is essentially planar, with the two benzene rings twisted by $5.44(8)^{\circ}$. The dihedral angle between the central fivemembered ring and the ethynylphenyl ring is $47.10(5)^{\circ}$. The molecular packing in the crystal structure is stabilized by van der Waals forces.

Comment

Carbazole-pyrene-based molecules can be used as organic emitters for organic light-emitting display (OLED) technology. In our earlier article (Xing et al., 2005), we described how some carbazole-based compounds were synthesized and characterized. The title compound, (I), selected and attached to pyrene for its sufficiently high triplet energy and the holetransport property, was synthesized through a Sonogashira coupling reaction between 9-(4-iodophenyl)-9H-carbazole and 2-methylbut-3-yn-2-ol, followed by decomposition under base conditions. An X-ray crystal-structure determination of (I) was undertaken in order to elucidate the conformation, and the results are presented here.

A perspective view of (I) with the atom-labeling scheme is shown in Fig. 1. The bond lengths and angles in the carbazole fragment are in good agreement with those observed for a closely related structure (Duan et al., 2004). The carbazole group is essentially planar, the dihedral angle between the two benzene rings being 5.44 (8$)^{\circ}$. The central five-membered ring and the C13-C18 benzene ring are not coplanar; the dihedral angle between them is $47.10(5)^{\circ}$. The interplanar distance between two carbazole planes is 3.875 (2) \AA along the b axis.

Experimental

The starting materials were purchased from Acros and used without purification. The intermediate 9-(4-iodophenyl)carbazole and (I)

Received 8 September 2005 Accepted 30 September 2005 Online 8 October 2005

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
were synthesized according to the method described previously by Sanda et al. (2003) and characterized by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and elemental analysis. Compound (I), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \delta$ in p.p.m., CDCl_{3}): $3.18(1 \mathrm{H}, s), 7.25-8.20(12 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \delta$ in p.p.m., CDCl_{3}): $78.1,82.9,109.8,120.4,120.5,121.0,123.5,126.1$, $126.8,133.8,138.1,140.6$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3266,2102,1600,1556$, $1452,1230,839,755,723$. Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}: \mathrm{C} 89.86, \mathrm{H}$ 4.90 , N 5.24%; found: C 89.79 , H 5.00 , N 5.21%. The crystal used for the data collection was obtained by slow evaporation of a saturated hexane-dichloromethane solution of (I) at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}$

$M_{r}=267.31$
Monoclinic, C2/c
$a=26.753$ (3) A
$b=5.7309$ (6) \AA
$c=20.185(2) \AA$
$\beta=110.868$ (2) ${ }^{\circ}$
$V=2891.8(5) \AA^{3}$
$Z=8$

Data collection

Bruker SMART CCD area-detector	3153 independent reflections
\quad diffractometer	2104 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.060$
Absorption correction: multi-scan	$\theta_{\max }=27.0^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-34 \rightarrow 32$
$T_{\min }=0.7291, T_{\max }=0.970$	$k=-7 \rightarrow 7$
8078 measured reflections	$l=-25 \rightarrow 20$

Figure 2
The molecular packing in the structure of (I), viewed along the b axis.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.100$
$S=0.90$
3153 reflections
243 parameters
All H -atom parameters refined
Extinction correction: SHELXL97
Extinction coefficient: 0.0108 (7)

All H atoms, located in a difference Fourier map, were refined freely. C -H distances are in the range 0.924 (16)-0.990 (14) \AA.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

PL thanks the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province.

References

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Duan, X.-M., Chen, L.-G., Xu, Y.-J., Li, Y., Han, J. \& Li, L.-P. (2004). Acta Cryst. E60, o1931-o1932.
Sanda, F., Kawaguchi, T., Masuda, T. \& Kobayashi, N. (2003). Macromolecules, 36, 2224-2229.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xing, Y.-J., Xu, X.-J., Zhang, P., Tian, W.-J., Yu, G., Lu, P., Liu, Y.-Q. \& Zhu, D.-B. (2005). Chem. Phys. Lett. 408, 169-173.

